

Lesson Plan Template	
Teachers' Name: Alexis, Victoria, Andrew, Brandon	Grade: 11
Subject: Chemistry	Topic: IUPAC Naming

A. Learning Goals & Success Criteria

What are the learning goals for this lesson? What represents success related to the learning goals? **Learning Goals:**

- -Prefixes for one to ten carbons in a compound
- -Write general formulas for alkanes, names, molecular formulas, draw structural formulas, complete structural diagrams, condensed structural diagrams, and line diagrams using IUPAC
- -IUPAC Naming Rules for alkanes

'Success':

- Able to name the ten prefixes for organic compounds (meth, eth, prop, but, pent, hex, hept, oct, no, dec)
- Knowledge of the alkane general formula (CnH2n+2)
- Ability to identify and name different Alkane compounds (prefix + 'ane')
- Able to draw Alkane compounds using complete, condensed, and skeletal methods

B. Lesson Outcomes	
GCOs/Competencies:	300 - Knowledge
SCOs:	-Write the formula and provide the IUPAC name for a variety of organic compounds (319-5)
Indicators:	
C. Lesson Phases	

Intro: Time: 10 minutes • "Do now activity" (3 minutes) • As students enter the classroom the 'Do now" instructions will be on the board • "The word carbon. Where do you think you've heard it before? Write down where carbon is found" • Give students 2 minutes to write down their answers when class timestarts • Ask a few to share with the class • Write some example on the board • Carbon dioxide • Fuels • Graphite • Living things • Diamonds • Ask students to hold up there paper with there answers to add to the board examples. • Explaining carbon (2 minutes) • "Carbon is the most important element on Earth, its in everything. From your pencil to your DNA. Its everywhere. Since carbon can for so many compounds, scientists need a way to name them all. That'
"Do now activity" (3 minutes) As students enter the classroom the 'Do now" instructions will be concluded the board "The word carbon. Where do you think you've heard it before? Write down where carbon is found" Give students 2 minutes to write down their answers when class timestarts Ask a few to share with the class Write some example on the board Carbon dioxide Fuels Graphite Living things Diamonds Ask students to hold up there paper with there answers to add to the board examples. Explaining carbon (2 minutes) "Carbon is the most important element on Earth, its in everything. From your pencil to your DNA. Its everywhere. Since carbon can fore
 As students enter the classroom the 'Do now" instructions will be of the board "The word carbon. Where do you think you've heard it before? Write down where carbon is found" Give students 2 minutes to write down their answers when class tin starts Ask a few to share with the class Write some example on the board Carbon dioxide Fuels Graphite Living things Diamonds Ask students to hold up there paper with there answers to add to the board examples. Explaining carbon (2 minutes) "Carbon is the most important element on Earth, its in everything. From your pencil to your DNA. Its everywhere. Since carbon can for
what we'll be starting today". Lesson objectives (5 minutes) "Today we're going to be learning how to name and tell the difference between carbon compounds called alkanes" Have learning goals written on the board as "the agenda". Then go over the goals on the board Learn the prefixes for one to ten carbons Understand the general formula for alkanes Toraw alkanes using complete, condensed, and line diagrams Use the IUPAC naming rules for alkanes "By the end of today's class you'll be able to look at any simple sing bonded carbon compound, be able to name it correctly and draw what it looks like in several forms."

Dod	
Body:	• Last class ravious
Time: 45 minutes	 Last class review Carbon has 4 valence electrons, allowing it to form 4 covalent
	bonds with other atoms.
	o carbon Can form single $(-)$, double $(=)$, or triple $(≡)$ bonds.
	 The number of shared electrons changes the bond strength and
	length.
	 Carbon atoms can link to form chains, branched chains, or rings.
	 Leads to an incredible variety of molecular shapes and sizes
	Give definition of alkanes
	 Each carbon is bonded to the maximum number of atoms (either
	carbon or hydrogen atoms): saturated hydrocarbon
	 Each molecule differs from the next molecule by the structural unit
	-CH ₂ -
	\circ C_nH_{2n+2}
	Show models of methane, ethane, propane and butane
	 Show pictures on slide and pass around models that have been built
	Questions:
	 Heptane has 7 carbon atoms. What is the chemical formula of
	heptane?
	 Nonane has 9 carbon atoms. What is its chemical formula?
	 An alkane with 4 carbon atoms. How many hydrogen atoms does it
	have?
	Straight and branched chain alkanes
	Prefixes
	Use a table
	Common alkyl groups
	Have these in a table as well
	Rules for naming
	Find the root: longest continuous chain
	• Count carbons to obtain the root
	Remember the main chain can be bent
	 If more than one chain could be the main chain, choose the
	chain that has the most branches
	 Find the suffix: if it's an alkane it is -ane
	 Give position numbers
	Identify branches
	 Number main chain carbons starting at the carbon closest
	to the branch
	 Find prefix

Name each branch as an alkyl group

Closing: Time: 5 minutes	Give branch a position number The number is which carbon it is attached to in the main chain If more than one branch is present, write the names in alphabetical order with the first letter of the prefix (methyl or ethyl) If there are two or more of the same type of branch, use multiplying prefixes such as di or tri Use hyphens to separate words from numbers, use commas to separate numbers When possible, put numbers in ascending order Put the name together: prefix + root + suffix Practice problems for naming 2,3,4-trimethylpentane: as a class 3-ethyl-3,4-dimethylhexane: as a table Drawing alkanes Identify the root and the suffix Draw the main chain first Choose one end of your carbon chain to be carbon number 1 Locate which carbons need branches Add branches Fill in hydrogens so each carbon has four atoms bonded to it Practice problems for drawing As a class do 3-ethyl-2-methylheptane As a table do 3-methyloctane Go over line structural drawings Get class to try and do one for 2,3,4-trimethylhexane Go over the textbook reading for next class Closing: Kahoot (5 minutes) Students will be asked a series of questions using cromebooks
D. Assessment Tasks	

D. Assessment Tasks

Briefly explain which assessment tasks you will be using and why.

Introduction Phase Assessment(s):

Each student writes down one thing that connects to carbon and holds it up - formative

Body of Lesson Phase Assessment(s):

Formative assessment when working in groups

Closing of Lesson Phase Assessment(s):

Kahoot- formative

E. Resources

Identify any/all resources required for this lesson.

- Smartboard/computer (slides)
- Model kits
- Mini whiteboards or paper for each table
- Chromebooks
- Kahoot activity
- Textbook reading
- Kahoot Link: https://create.kahoot.it/share/chem-11-kahoot/82bd01aa-2087-4fb5-ad0d-dd16b6623b92

F. Inclusive Practices

Explain how the lesson, and what you did as the teacher, supports inclusive practice.

- Differentiated instruction available
- Allow each table to have a model kit or use of online builder